crested.tl.zoo.deeptopic_lstm#
- crested.tl.zoo.deeptopic_lstm(seq_len, num_classes, filters=300, first_kernel_size=30, max_pool_size=15, max_pool_stride=5, dense_out=256, lstm_out=128, first_activation='relu', activation='relu', output_activation='sigmoid', lstm_do=0.1, dense_do=0.4, pre_dense_do=0.2, motifs_path=None)#
Construct a DeepTopicLSTM model. Usually used for topic classification.
- Parameters:
seq_len (
int
) – Width of the input region.num_classes (
int
) – Number of classes to predict.filters (
int
(default:300
)) – Number of filters in the first convolutional layer. Followed by halving in subsequent layers.first_kernel_size (
int
(default:30
)) – Size of the kernel in the first convolutional layer.max_pool_size (
int
(default:15
)) – Size of the max pooling kernel.max_pool_stride (
int
(default:5
)) – Stride of the max pooling kernel.dense_out (
int
(default:256
)) – Number of neurons in the dense layer.lstm_out (
int
(default:128
)) – Number of units in the lstm layer.first_activation (
str
(default:'relu'
)) – Activation function for the first conv block.activation (
str
(default:'relu'
)) – Activation function for subsequent blocks.output_activation (
str
(default:'sigmoid'
)) – Activation function for the output layer.lstm_do (
float
(default:0.1
)) – Dropout rate for the lstm layer.dense_do (
float
(default:0.4
)) – Dropout rate for the dense layers.pre_dense_do (
float
(default:0.2
)) – Dropout rate before the dense layers.motifs_path (
Optional
[str
] (default:None
)) – Path to the motif file to initialize the convolutional weights.
- Return type:
Model
- Returns:
A Keras model.