crested.tl.zoo.deeptopic_cnn#
- crested.tl.zoo.deeptopic_cnn(seq_len, num_classes, filters=1024, first_kernel_size=17, pool_size=4, dense_out=1024, first_activation='gelu', activation='relu', output_activation='sigmoid', conv_do=0.15, normalization='batch', dense_do=0.5, pre_dense_do=0.5, first_kernel_l2=0.0001, kernel_l2=1e-05)#
Construct a DeepTopicCNN model. Usually used for topic classification.
- Parameters:
seq_len (
int
) – Width of the input region.num_classes (
int
) – Number of classes to predict.filters (
int
(default:1024
)) – Number of filters in the first convolutional layer. Followed by halving in subsequent layers.first_kernel_size (
int
(default:17
)) – Size of the kernel in the first convolutional layer.pool_size (
int
(default:4
)) – Size of the pooling kernel.dense_out (
int
(default:1024
)) – Number of neurons in the dense layer.first_activation (
str
(default:'gelu'
)) – Activation function for the first conv block.activation (
str
(default:'relu'
)) – Activation function for subsequent blocks.output_activation (
str
(default:'sigmoid'
)) – Activation function for the output layer.conv_do (
float
(default:0.15
)) – Dropout rate for the convolutional layers.normalization (
str
(default:'batch'
)) – Type of normalization (‘batch’ or ‘layer’).dense_do (
float
(default:0.5
)) – Dropout rate for the dense layers.pre_dense_do (
float
(default:0.5
)) – Dropout rate right before the dense layers.first_kernel_l2 (
float
(default:0.0001
)) – L2 regularization for the first convolutional layer.kernel_l2 (
float
(default:1e-05
)) – L2 regularization for the other convolutional layers.
- Return type:
Model
- Returns:
A Keras model.