crested.tl.predict#
- crested.tl.predict(input, model, genome=None, **kwargs)#
Make predictions using the model(s) some input that represents sequences.
If a list of models is provided, the predictions will be averaged across all models.
- Parameters:
input (str | list[str] | np.array | AnnData) – Input data to make predictions on. Can be a (list of) sequence(s), a (list of) region name(s), a matrix of one hot encodings (N, L, 4), or an AnnData object with region names as its var_names.
model (keras.Model | list[keras.Model]) – A (list of) trained keras model(s) to make predictions with.
genome (Genome | os.PathLike | None (default:
None
)) – Genome or path to the genome file. Required if no genome is registered and input is an anndata object or region names.**kwargs – Additional keyword arguments to pass to the keras.Model.predict method.
- Return type:
None | np.ndarray
- Returns:
Predictions of shape (N, C)
Example
>>> my_sequences = ["ACGT", "CGTA", "GTAC"] >>> predictions = predict( ... input=my_sequences, ... model=my_trained_model, ... )