crested.tl.modisco.tfmodisco#
- crested.tl.modisco.tfmodisco(contrib_dir='modisco_results', class_names=None, output_dir='modisco_results', max_seqlets=5000, window=500, n_leiden=2, report=False, meme_db=None, verbose=True)#
Run tf-modisco on one-hot encoded sequences and contribution scores stored in .npz files.
- Parameters:
contrib_dir (
PathLike
(default:'modisco_results'
)) – Directory containing the contribution score and one hot encoded regions npz files.class_names (
Optional
[list
[str
]] (default:None
)) – list of class names to process. If None, all class names found in the output directory will be processed.output_dir (
PathLike
(default:'modisco_results'
)) – Directory where output files will be saved.max_seqlets (
int
(default:5000
)) – Maximum number of seqlets per metacluster.window (
int
(default:500
)) – The window surrounding the peak center that will be considered for motif discovery.n_leiden (
int
(default:2
)) – Number of Leiden clusterings to perform with different random seeds.report (
bool
(default:False
)) – Generate a modisco report.meme_db (
Optional
[str
] (default:None
)) – Path to a MEME file (.meme) containing motifs. Required if report is True.verbose (
bool
(default:True
)) – Print verbose output.
Examples
>>> evaluator = crested.tl.Crested(...) >>> evaluator.load_model(/path/to/trained/model.keras) >>> evaluator.tfmodisco_calculate_and_save_contribution_scores( ... adata, class_names=["Astro", "Vip"], method="expected_integrated_grad" ... ) >>> crested.tl.tfmodisco( ... contrib_dir="modisco_results", ... class_names=["Astro", "Vip"], ... output_dir="modisco_results", ... window=1000, ... )