Plotting: pl#

Plotting description

render_plot(fig[, width, height, title, ...])

Render a plot with customization options.

Patterns: Contribution scores and Modisco results#

patterns.contribution_scores(scores, ...[, ...])

Visualize interpretation scores with optional highlighted positions.

patterns.modisco_results(classes, ...[, ...])

Plot genomic contributions for the given classes.

Bar plots#

bar.region(adata, region[, target])

Barplot of groundtruths or predictions for a specific region comparing classes.

bar.region_predictions(adata, region[, ...])

Barplots of all predictions in .layers vs the groundtruth for a specific region across comparing classes.

bar.normalization_weights(adata, **kwargs)

Plot the distribution of normalization scaling factors per cell type.

Distribution plots#

hist.distribution(adata[, target, ...])

Histogram of region distribution for specified classes.

Heatmap#

Correlations

heatmap.correlations_self(adata[, ...])

Plot self correlation heatmaps of ground truth for different cell types.

heatmap.correlations_predictions(adata[, ...])

Plot correlation heatmaps of predictions vs ground truth or target values for different cell types.

Scatter plots#

scatter.class_density(adata[, class_name, ...])

Plot a density scatter plot of predictions vs ground truth for specified models and class.