Plotting: pl#

Functions to visualize your model’s predictions or contribution scores.

render_plot(fig[, width, height, title, ...])

Render a plot with customization options.

Patterns: Contribution scores and Modisco results#

patterns.contribution_scores(scores, ...[, ...])

Visualize interpretation scores with optional highlighted positions.

patterns.modisco_results(classes, ...[, ...])

Plot genomic contributions for the given classes.

patterns.enhancer_design_steps_contribution_scores(...)

Visualize enhancer design stepwise contribution scores.

patterns.enhancer_design_steps_predictions(...)

Visualize enhancer design prediction score progression.

patterns.selected_instances(pattern_dict, idcs)

Plot the patterns specified by the indices in idcs from the pattern_dict.

patterns.class_instances(pattern_dict, idx)

Plot instances of a specific pattern, either the representative pattern per class or all instances for a given pattern index.

patterns.clustermap(pattern_matrix, classes)

Create a clustermap from the given pattern matrix and class labels with customizable options.

patterns.clustermap_with_pwm_logos(...[, ...])

Create a clustermap with additional PWM logo plots below the heatmap.

patterns.clustermap_tf_motif(data[, ...])

Generate a heatmap where one modality is represented as color, and the other as dot size.

patterns.tf_expression_per_cell_type(df, tf_list)

Plot the expression levels of specified transcription factors (TFs) per cell type.

patterns.similarity_heatmap(...[, fig_size, ...])

Plot a similarity heatmap of all pattern indices.

Bar plots#

bar.region(adata, region[, target])

Barplot of groundtruths or predictions for a specific region comparing classes.

bar.region_predictions(adata, region[, ...])

Barplots of all predictions in .layers vs the groundtruth for a specific region across comparing classes.

bar.normalization_weights(adata, **kwargs)

Plot the distribution of normalization scaling factors per cell type.

Distribution plots#

hist.distribution(adata[, target, ...])

Histogram of region distribution for specified classes.

Correlation heatmaps#

heatmap.correlations_self(adata[, ...])

Plot self correlation heatmaps of ground truth for different cell types.

heatmap.correlations_predictions(adata[, ...])

Plot correlation heatmaps of predictions vs ground truth or target values for different cell types.

Locus plots#

locus.locus_scoring(scores, range[, ...])

Plot the predictions as a line chart over the entire genomic input and optionally indicate the gene locus.

locus.track(scores[, range, title, ylim])

Plot a predicted locus track, like a Borzoi prediction or BigWig track.

Scatter plots#

scatter.class_density(adata[, class_name, ...])

Plot a density scatter plot of predictions vs ground truth for specified models and class.

Violin plots#

violin.correlations(adata[, model_names, ...])

Plot correlation violinplots of predictions vs ground truth for different cell types.