crested.pl.scatter.class_density#
- crested.pl.scatter.class_density(adata, class_name=None, model_names=None, split='test', log_transform=False, exclude_zeros=True, density_indication=False, alpha=0.25, **kwargs)#
Plot a density scatter plot of predictions vs ground truth for specified models and class.
- Parameters:
adata (
AnnData
) – AnnData object containing the data inX
and predictions inlayers
.class_name (
Optional
[str
] (default:None
)) – Name of the class inadata.obs_names
. If None, plot is made for all the classes.model_names (
Optional
[list
[str
]] (default:None
)) – List of model names inadata.layers
. If None, will create a plot per model inadata.layers
.split (
str
|None
(default:'test'
)) – ‘train’, ‘val’, ‘test’ subset or None. If None, will use all targets. If not None, expects a “split” column in adata.var.log_transform (
bool
(default:False
)) – Whether to log-transform the data before plotting. Default is False.exclude_zeros (
bool
(default:True
)) – Whether to exclude zero ground truth values from the plot. Default is True.density_indication (
bool
(default:False
)) – Whether to indicate density in the scatter plot. Default is False.alpha (
float
(default:0.25
)) – Transparency of points in scatter plot. From 0 (transparent) to 1 (opaque).kwargs – Additional arguments passed to
render_plot()
to control the final plot output. Please seerender_plot()
for details.
- Return type:
See also
Example
>>> crested.pl.scatter.class_density( ... adata, ... class_name="Astro", ... model_names=["model1", "model2"], ... split="test", ... log_transform=True, ... )