crested.pl.patterns.enhancer_design_steps_predictions#
- crested.pl.patterns.enhancer_design_steps_predictions(intermediate, target_classes, obs_names, seperate=False, global_ylim='minmax', n_rows=None, n_cols=None, alpha_seperate=1.0, legend_seperate=False, plot_color=(0.3, 0.5, 0.6), show_fliers=False, fig_rescale=1.0, **kwargs)#
Visualize enhancer design prediction score progression.
- Parameters:
intermediate (
list
[dict
]) – Intermediate output from enhancer design when return_intermediate is Truetarget_classes (
str
|list
[str
]) – Target classes that the predictions will be plotted for. All target classes must be in obs_names.obs_names (
Index
|list
[str
]) – All class names either in the form of AnnData.obs_names or as a list.seperate (
bool
(default:False
)) – Whether to plot each design enhancer seperately, or all together as a boxplot. Default is False.global_ylim (
str
(default:'minmax'
)) – Used to set global y-axis limits across plots. Can be one of ‘classification’, ‘minmax’ or None. Default is ‘minmax’ ‘classification’ makes the y-axis limits (0, 1). ‘minmax’ makes the y-axis limit minimum and maximum prediction across all the target classes of all designed enhancers If None, each plot has its y-axis limits seperately selected.n_rows (
Optional
[int
] (default:None
)) – Number of rows to use when more than one target class is selected.n_cols (
Optional
[int
] (default:None
)) – Number of columns to use when more than one target class is selected.alpha_seperate (
float
(default:1.0
)) – Line alpha for lines when seperate is True. Default is 1.0.legend_seperate (
bool
(default:False
)) – Whether to plot a legend when seperate is True. Default is False.plot_color (
str
|tuple
(default:(0.3, 0.5, 0.6)
)) – Boxplot color when seperate is False. Default is (0.3, 0.5, 0.6).show_fliers (
bool
(default:False
)) – Whether to show fliers when seperate is False. Default is False.fig_rescale (
float
(default:1.0
)) – A scalar to scale the figure size up or down. Default is 1.0.