crested.pl.patterns.contribution_scores#
- crested.pl.patterns.contribution_scores(scores, seqs_one_hot, sequence_labels=None, class_labels=None, zoom_n_bases=None, highlight_positions=None, ylim=None, method=None, **kwargs)#
Visualize interpretation scores with optional highlighted positions.
Contribution scores can be calculated using the
calculate_contribution_scores()
method.- Parameters:
scores (
ndarray
) – Contribution scores of shape (n_seqs, n_classes, n_bases, n_features).seqs_one_hot (
ndarray
) – One-hot encoded corresponding sequences of shape (n_seqs, n_bases, n_features).sequence_labels (
Optional
[list
] (default:None
)) – List of sequence labels (subplot titles) to add to the plot. Should have the same length as the number of sequences.class_labels (
Optional
[list
] (default:None
)) – List of class labels to add to the plot. Should have the same length as the number of classes.zoom_n_bases (
Optional
[int
] (default:None
)) – Number of center bases to zoom in on. Default is None (no zooming).highlight_positions (
Optional
[list
[tuple
[int
,int
]]] (default:None
)) – List of tuples with start and end positions to highlight. Default is None.ylim (
Optional
[tuple
] (default:None
)) – Y-axis limits. Default is None.method (
Optional
[str
] (default:None
)) – Method used for calculating contribution scores. If mutagenesis, specify.
See also
Examples
>>> import numpy as np >>> scores = np.random.rand(1, 1, 100, 4) >>> seqs_one_hot = np.random.randint(0, 2, (1, 100, 4)) >>> class_labels = ["celltype_A"] >>> sequence_labels = ["chr1:100-200"] >>> crested.pl.patterns.contribution_scores( ... scores, seqs_one_hot, sequence_labels, class_labels ... )