crested.pl.heatmap.correlations_predictions#
- crested.pl.heatmap.correlations_predictions(adata, model_names=None, split='test', log_transform=False, vmin=None, vmax=None, **kwargs)#
Plot correlation heatmaps of predictions vs ground truth or target values for different cell types.
- Parameters:
adata (
AnnData
) – AnnData object containing the data inX
and predictions inlayers
.model_names (
Optional
[list
[str
]] (default:None
)) – List of model names (adata.layers) to plot for predictions heatmap. Default is to plot all models inadata.layers
.split (
str
|None
(default:'test'
)) – ‘train’, ‘val’, ‘test’ subset or None. If None, will use all targets. If not None, expects a “split” column in adata.var.log_transform (
bool
(default:False
)) – Whether to log-transform the data before plotting.vmin (
Optional
[float
] (default:None
)) – Minimum value for heatmap color scale.vmax (
Optional
[float
] (default:None
)) – Maximum value for heatmap color scale.kwargs – Additional arguments passed to
render_plot()
to control the final plot output. Please seerender_plot()
for details.
- Return type:
See also
Examples
>>> crested.pl.heatmap.correlations_predictions( ... adata, ... model_names=None, ... split="test", ... log_transform=True, ... vmin=0.4, ... vmax=0.85, ... title="Correlations: Predictions vs Ground Truth", ... )